Strength

Discussion of Nature’s Design Solutions in Tintinnids: Masters of Microzooplankton Survival

In this essay, we explore tintinnids’ survival designs within the context of fundamental physics principles. Tintinnids employ diverse mechanisms to outmaneuver predators, locate prey, and safeguard themselves. To avoid predators, tintinnids utilize specific swimming patterns, attach to groups of particles, develop symbiotic relationships with diatoms, and have undergone morphological adaptations…

Read More »

Frustules: Design solutions in Diatoms

There are many microorganisms in the universe, and they can generally be sorted into three types: prokaryotic, eukaryotic, and acellular. The subject of this paper is a member of the eukaryotic family, and they are commonly present in nature: the diatom. The diatomite which is formed by the death of…

Read More »

Mathematical Modeling of Marine Suction Cups

Many marine animals have evolved to include suction cups, and the suction cups of the natural world continue to inspire synthetic cup technology. Mathematical models can be used to understand the adaptations of different species and the way these operate. By deepening the knowledge of suction mechanisms, new and better…

Read More »

Using Mathematical Principles to Gain a Deeper Understanding of the Form and Function of Hooves

The role of ungulates’ hooves, which are morphologically complex structures, is to support body weight and provide traction to aid in their adaptation to varied external conditions. This essay aims to investigate the relationship between the mathematical model and the morphology of the hoof. The golden ratio, an irrational constant…

Read More »

Mechanical Analysis of Animal Horns

This essay dives into animal horns and the physical composition, mechanical properties, and ingenious designs that make them incredibly effective at everything they do. It features a selection of horn structures from different organisms in the animal kingdom, which demonstrates the diversity of horn structures while also showing the uniform…

Read More »

Spines: The Multitudes and Multi-functionalities of their Mechanisms

Abstract Many organisms possess internal defense mechanisms, intrinsic properties, and behaviors adapted for their survival. Spines and quills differ immensely across families, and this disparity exacerbates further amongst taxa. Environmental pressures such as predation and habitat unique to each species results in various physical design mechanisms for spines and quills.…

Read More »

Biomechanics of Marine Suction Cups and Applications to Artificial Suction Technology

Suction cups are important adhesive adaptations for many marine animals, allowing for locomotion, predation, stability, and grasping of objects. Interesting morphological adaptations have allowed the suction cups of distinct species to best accommodate the purpose of the suctioning mechanism as well as the unique environment that the organism inhabits. The…

Read More »

The Mechanics of Antler Bone: A Weapon for Courtship

An organism’s evolutionary fitness is determined by its ability to pass on its genes to its offspring. Males of some species make use of their courting and fighting abilities to gain access to mates, thus passing on genetic material. When it comes to Cervidae, or the family of ruminant mammals,…

Read More »

Review of the Mechanical, Structural, and Physical Properties of Pincers: An Evolutionary Wonder

Pincers (alternatively known as chelae) are an integral and signature part of many arthropods. From arachnids to crustaceans, pincers exhibit critical functional roles in survival. The pincers of scorpions are notably multifunctional with their importance in seizing and capturing prey while inflicting pain and deterring predators. In crustaceans, chelae exhibit…

Read More »

A Biomechanical Review of Animal Tongue Functions

The animal kingdom is characterized by an astonishing diversity in tongue morphologies, functions and mechanical abilities. Through evolution, different animal tongues have adapted to perform complex mechanical functions in prey-catching and feeding in order to ensure the survival of their species. Chameleons possess the ability to ballistically project their tongues…

Read More »