Transport Phenomena

Discussion of Nature’s Design Solutions in Tintinnids: Masters of Microzooplankton Survival

In this essay, we explore tintinnids’ survival designs within the context of fundamental physics principles. Tintinnids employ diverse mechanisms to outmaneuver predators, locate prey, and safeguard themselves. To avoid predators, tintinnids utilize specific swimming patterns, attach to groups of particles, develop symbiotic relationships with diatoms, and have undergone morphological adaptations…

Read More »

The Physics of Coral Polyps

Coral polyps have been studied from many scientific standpoints, but this paper will examine coral polyps from a physical standpoint. To begin, polyps were analyzed under the lens of kinetics, relating the specific movement of polyps to the benefits of this movement. Through their natural ability to manipulate water flow…

Read More »

A Physical Analysis of Magnetotactic Bacteria: Nature’s Microscopic Compass as a Solution to a Motile Biotope

Figure 1: Magnetotactic Bacteria (Perduca, 2016). Magnetotactic bacteria (MTB) are unique aquatic microaerophiles that can align and move in the direction of the Earth’s magnetic field. In this paper, the basic physical properties of magnetosomes, some mechanisms, such as magnetotaxis, and phototaxis, involved in the MTB’s motion, and the role…

Read More »

Physical Principles Governing the Movement of Dinoflagellates and The Implications for Their Interactions in Aquatic Ecosystems

Dinoflagellates are unicellular eukaryotic cells. There are around 2400 known species of dinoflagellates. This phylum is very diverse; among different species, we observe several unique characteristics of behavior and morphology. All dinoflagellates, however, have two flagella. These flagella allow them to swim in a unique and interesting manner. A dinoflagellate…

Read More »

Mathematical Models of Diatoms: Understanding Their Complex Shape, Reproduction and Chain Formation

Apart from physical and chemical solutions used by the diatom for survival, some features of the unicellular microalgae also could be described in mathematics. For instance, the diatom morphology reveals a striking alignment with the golden ratio and fractal geometry. By examining the silica shells of these unicellular algae, we…

Read More »

Life-Sustaining Processes of the Diatom

The chemical reactions, processes, and mechanisms that occur inside diatoms are key to their ability to survive and dominate the world of microalgae. Through photosynthesis, the diatom can absorb sunlight and carbon dioxide and then convert them into oxygen and glucose with the help of chlorophyll, which is a common…

Read More »

Frustules: Design solutions in Diatoms

There are many microorganisms in the universe, and they can generally be sorted into three types: prokaryotic, eukaryotic, and acellular. The subject of this paper is a member of the eukaryotic family, and they are commonly present in nature: the diatom. The diatomite which is formed by the death of…

Read More »

The Mathematical Principles Pertaining to Coccolithophores

Through their production of protective calcite shells known as coccospheres, coccolithophores are known as one of the ocean’s many architects. These coccospheres can be broken down into smaller and smaller components: individual ‘shields’ known as coccoliths and singular calcite crystals. Both the arrangement of individual calcite crystals in coccoliths and…

Read More »

Aquatic Fungi: An Exploration of Adaptations in Chemical Processes

This article explores the chemistry behind the diverse functions and characteristics of aquatic fungi, a fascinating group of microorganisms that inhabit freshwater and marine ecosystems. Aquatic fungi play an important role in the cycling of nutrients and the decomposition of organic matter. This article gives an overview elucidating the key…

Read More »

Physical Analysis of Amoeba

Out of all the types of cell migration, amoeboid movement is studied very extensively due to its use by important biological components such as white blood cells. Despite the attention it has received, this type of cell movement has yet to be fully understood. Examining it from different perspectives helps…

Read More »

Functional Mechanics of the Elephant and Butterfly Proboscis

The trunk, also known as the proboscis, is a tubular, flexible and hollow appendage that varies in size and function; some species use it to regulate temperature, while others use it for feeding or grabbing. The purpose of this paper is to explore the biological mechanics of the movement and…

Read More »

An Evolutionary Analysis of the Chemical Composition of Marine Suction Cups

Abstract Suction cups are important adaptations for aquatic animals, allowing for predation, locomotion, stability, and other species-specific functions. The chemical structure of each suction cup is designed by nature to be as energetically efficient as possible in performing the suction cup’s species-specific purpose, giving the suction cup chemical properties that…

Read More »