Organelles

A Mathematical Approach to Understanding Volvox

Abstract This paper sheds light on the suitability of mathematical theories and models to unveil a variety of design solutions inherent to Volvox. Having evolved from the unicellular Chlamydomonas, Volvox demonstrates that multicellularity is of particular interest to improve the nutrient uptake per somatic cell. Also, randomness plays a role

Read More »

The Biophysics of Volvox

Abstract Volvox are microscopic colonial algae that are heavily studied as they are one of the simplest examples of multicellular organisms. Composed of hundreds to tens of thousands of individual cells moving in harmony, they are the source of several mesmerizing phenomena, each of them serving a purpose for the

Read More »

The innovative structural and physical properties of Radiolaria

ABSTRACT The intricate silica skeletons of Radiolaria, a type of marine microorganism, exhibit striking optical fiber-like properties, offering a potential roadmap for future innovations in the optical field. Beyond their applications for photonics, radiolarians are fascinating models for studying buoyancy control. They exhibit a variety of adaptive mechanisms that alter

Read More »

AN INVESTIGATION INTO THE MATHEMATICAL MODELLING OF THE PROPERTIES OF GONIUM

ABSTRACT  The multicellular algae of genus Gonium have been shown to be a remarkable feat of evolution. It can be difficult to fully appreciate the colonial algae’s ingenuity when only observing the organism. By attempting to model their behaviour, insight into the beauty of their design can be gained in

Read More »

AN INVESTIGATION INTO THE CHEMICAL PROPERTIES OF GONIUM

ABSTRACT  Gonium is a genus of multicellular green algae with chemical systems of high complexity developed by generations of evolution. Gonium is an autotroph and exhibits a variety of chemical photocycles that control its behavior without a central nervous system. Because Gonium has no cellular differentiation, chemical systems exist separately

Read More »

AN INVESTIGATION OF THE PHYSICAL PROPERTIES OF GONIUM

ABSTRACT Gonium pectorale is a small 16-celled photosynthetic algae that provides a refreshing outlook on the evolution of green algae and the concept of modularity. Each individual cell operates with its own two flagella, which are propulsion appendages, and an eyespot, an optical light sensor. Without a central nervous system,

Read More »

Underwater Chemists; Discussion of Design Solutions in Tintinnid Ciliates

In this essay we explore tintinnids’ intricate design solutions through the lens of chemical processes and pathways, emphasizing the vital role chemistry plays in their survival. These ciliates employ complex chemical processes that regulate digestion, reproduction, self-protection, and swimming mechanisms. We explore the cell and life cycle of tintinnids, their…

Read More »

A Physical Analysis of Magnetotactic Bacteria: Nature’s Microscopic Compass as a Solution to a Motile Biotope

Figure 1: Magnetotactic Bacteria (Perduca, 2016). Magnetotactic bacteria (MTB) are unique aquatic microaerophiles that can align and move in the direction of the Earth’s magnetic field. In this paper, the basic physical properties of magnetosomes, some mechanisms, such as magnetotaxis, and phototaxis, involved in the MTB’s motion, and the role…

Read More »

Physical Principles Governing the Movement of Dinoflagellates and The Implications for Their Interactions in Aquatic Ecosystems

Dinoflagellates are unicellular eukaryotic cells. There are around 2400 known species of dinoflagellates. This phylum is very diverse; among different species, we observe several unique characteristics of behavior and morphology. All dinoflagellates, however, have two flagella. These flagella allow them to swim in a unique and interesting manner. A dinoflagellate…

Read More »

Life-Sustaining Processes of the Diatom

The chemical reactions, processes, and mechanisms that occur inside diatoms are key to their ability to survive and dominate the world of microalgae. Through photosynthesis, the diatom can absorb sunlight and carbon dioxide and then convert them into oxygen and glucose with the help of chlorophyll, which is a common…

Read More »