Environment

Unveiling the Chemistry of Radiolaria: Exploring Elemental Insights and Environmental Significance

– ABSTRACT – The Radiolarian species are a diverse group of marine microorganisms. They are known for their intricate and multi-functional silica skeletons. Due to rough oceanic conditions, the formation of a hard silica shell through biomineralization allows them to maintain their shape. The dissolution of their siliceous skeletons at

Read More »

The Innovative Structural and Physical Properties of Radiolaria

ABSTRACT The intricate silica skeletons of Radiolaria, a type of marine microorganism, exhibit striking optical fiber-like properties, offering a potential roadmap for future innovations in the optical field. Beyond their applications for photonics, radiolarians are fascinating models for studying buoyancy control. They exhibit a variety of adaptive mechanisms that alter

Read More »

An Investigation into the Mathematical Modeling of the Properties of Gonium

ABSTRACT  The multicellular algae of genus Gonium have been shown to be a remarkable feat of evolution. It can be difficult to fully appreciate the colonial algae’s ingenuity when only observing the organism. By attempting to model their behaviour, insight into the beauty of their design can be gained in

Read More »

An Investigation into the Chemical Properties of Gonium

ABSTRACT  Gonium is a genus of multicellular green algae with chemical systems of high complexity developed by generations of evolution. Gonium is an autotroph and exhibits a variety of chemical photocycles that control its behavior without a central nervous system. Because Gonium has no cellular differentiation, chemical systems exist separately

Read More »

An Investigation of the Physical Properties of Gonium

ABSTRACT Gonium pectorale is a small 16-celled photosynthetic algae that provides a refreshing outlook on the evolution of green algae and the concept of modularity. Each individual cell operates with its own two flagella, which are propulsion appendages, and an eyespot, an optical light sensor. Without a central nervous system,

Read More »

Mathematical Marvels of Foraminifera

Abstract Foraminifera are a family of marine unicellular eukaryotes whose fossils can be found throughout the world, from the deepest crevices of the ocean to the highest peaks of the Egyptian Pyramids. In this paper, we explore the mathematical models describing the optimization of common adaptations in foraminifera. Beginning with

Read More »

Deciphering Daphnia Dynamics: A Mathematical Odyssey into Aquatic Ecosystems

Abstract Amongst all the chaos found in aquatic ecosystems, Daphnia emerges as a small yet pivotal player, embodying the complexity and adaptability of life. This study presents a mathematical journey into Daphnia populations, revealing the sophisticated interplay between their unique reproductive strategies, survival tactics, and trophic interactions. Cyclical parthenogenesis, a

Read More »

Shaping Success: A Mathematical Exploration of Cyanobacteria across Scales

ABSTRACT Mathematical models and functions are familiar tools used to study biological systems and interactions, in particular with the study of infectious diseases. Epidemic and pandemic dynamics, however, are only one example of their applications for adding analysis, understanding, and insight into complex topics. In this essay, cyanobacteria’s size and

Read More »

Coral Polyps and the Chemical Symphony of Survival

While coral polyps have been extensively studied across various scientific perspectives, this paper will specifically explore them from a chemical standpoint. The coral polyp’s biomineralization process is investigated, highlighting its critical role in creating a suitable habitat. The chemical reaction between bicarbonate and calcium produces aragonite crystals which form the…

Read More »

Mechanics and Optics of Cyanobacteria: How to Survive over Billions of Years

Abstract This essay sheds light on a unique photoautotrophic prokaryote that presents a wide range of physical properties. Although billions of years old, cyanobacteria still ingeniously make use of their structural composition, mechanical processes, and optical properties to interact with their surroundings. With a strong gliding motility, a light sensing

Read More »

The Biochemical Features of Tardigrades and Their Roles in Maintaining Cellular Functional Integrity

Extensive studies have been carried out regarding tardigrades’ so-called tun state as a means of survival in the face of all sorts of harsh environmental conditions. While the surviving capabilities of tardigrades in inhospitable habitats are outstanding and worth examining, many of the ways by which they succeed in maintaining…

Read More »